考研數學作為一門邏輯性非常強的學科,在學習上除了要學會舉一反三,不斷的通過大量做題提高自己的熟練程度之外,無疑在解題上還要掌握一定的答題技巧。下面,數學考研輔導專家就結合多年的輔導經驗為廣大2011年考研學生簡單的歸納概括一下高數、現代、概率和數理統計幾門科目的快捷定理,希望對考生們能夠有所幫助。
一、高等數學
1.在題設條件中給出一個函數f(x)二階和二階以上可導,“不管三七二十一”,把f(x)在指定點展成泰勒公式。
2.在題設條件或欲證結論中有定積分表達式時,則“不管三七二十一”先用積分中值定理對該積分式處理一下。
3.在題設條件中函數f(x)在[a,b]上連續,在(a,b)內可導,且f(a)=0或f(b)=0或f(a)=f(b)=0,則“不管三七二十一”先用拉格朗日中值定理處理。
4.對定限或變限積分,若被積函數或其主要部分為復合函數,則“不管三七二十一”先做變量替換使之成為簡單形式f(u)。
二、線性代數
1.題設條件與代數余子式Aij或A*有關,則立即聯想到用行列式按行(列)展開定理以及AA*=A*A=|A|E 。
2.若涉及到A、B是否可交換,即AB=BA,則立即聯想到用逆矩陣的定義去分析。
3.若題設n階方陣A滿足f(A)=0,要證aA+bE可逆,則先分解出因子aA+bE再說。4.若要證明一組向量a1,a2,…,as線性無關,先考慮用定義。
5.若已知AB=0,則將B的每列作為Ax=0的解來處理。
6.若由題設條件要求確定參數的取值,聯想到是否有某行列式為零。
7.若已知A的特征向量ζ0,則先用定義Aζ0=λ0ζ0處理。
8.若要證明抽象n階實對稱矩陣A為正定矩陣,則用定義處理。
三、概率與數理統計
1.如果要求的是若干事件中“至少”有一個發生的概率,則馬上聯想到概率加法公式;當事件組相互獨立時,用對立事件的概率公式 。
2.若給出的試驗可分解成(0-1)的n重獨立重復試驗,則馬上聯想到Bernoulli試驗,及其概率計算公式。
3.若某事件是伴隨著一個完備事件組的發生而發生,則馬上聯想到該事件的發生概率是用全概率公式計算。關鍵:尋找完備事件組。
4.若題設中給出隨機變量X ~ N 則馬上聯想到標準化 ~ N(0,1)來處理有關問題。
5.求二維隨機變量(X,Y)的邊緣分布密度 的問題,應該馬上聯想到先畫出使聯合分布密度的區域,然后定出X的變化區間,再在該區間內畫一條//y軸的直線,先與區域邊界相交的為y的下限,后者為上限,而 的求法類似。
6.欲求二維隨機變量(X,Y)滿足條件Y≥g(X)或(Y≤g(X))的概率,應該馬上聯想到二重積分 的計算,其積分域D是由聯合密度的平面區域及滿足Y≥g(X)或(Y≤g(X))的區域的公共部分。
7.涉及n次試驗某事件發生的次數X的數字特征的問題,馬上要聯想到對X作(0-1)分解。即令
8.凡求解各概率分布已知的若干個獨立隨機變量組成的系統滿足某種關系的概率(或已知概率求隨機變量個數)的問題,馬上聯想到用中心極限定理處理。
以上就是為考生們簡單歸納總結的考研數學做題時需要聯想到的快捷定理,這些可以幫助考生在第一時間快速找到答題思路。當然,這些定理的使用還是要求大家在平時多通過做題來實現加以鍛煉,還是那句老話,“熟能生巧”,只有熟練掌握這些定理才能更好的、更快速的解題。
|